
Sick-Sicker case-study using darthpack, an R package
with DARTH’s decision modeling coding framework
Supplementary Material to “A need for change! A coding framework for improving

transparency in decision modeling”

DARTH

2019-08-03

2

Contents

The Sick-Sicker model 5
Set-up . 7

1 Define model inputs 9

2 Decision model 13

3 Model calibration 19

4 Validation 23

5 Analysis 27
5.1 05a Probabilistic analysis . 27
5.2 05b Deterministic analysis . 34
5.3 05c Value of information . 40

3

4 CONTENTS

The Sick-Sicker model

In this case-study, we perform a cost-effectiveness analysis (CEA) using a previously published 4-state model
called the Sick-Sicker model (Enns et al., 2015). In the Sick-Sicker model, a hypothetical disease affects
individuals with an average age of 25 years and results in increased mortality, increased treatment costs and
reduced quality of life (QoL). We simulate this hypothetical cohort of 25-year-old individuals over a lifetime
(i.e., reaching an age of 100 years old) using 75 annual cycles, represented with n_t. The cohort starts in the
“Healthy” health state (denoted “H”). Healthy individuals are at risk of developing the illness, at which point
they would transition to the first stage of the disease (the “Sick” health state, denoted “S1”). Sick individuals
are at risk of further progressing to a more severe stage (the “Sicker” health state, denoted “S2”), which
is a constant probability in this case-study. There is a chance that individuals in the Sick state eventually
recover and return back to the Healthy state. However, once an individual reaches the Sicker state, they
cannot recover; that is, the probability of transitioning to the Sick or Healthy states from the Sicker state is
zero. Individuals in the Healthy state face background mortality that is age-specific (i.e., time-dependent).
Sick and Sicker individuals face an increased mortality expressed as a hazard rate ratio (HR) of 3 and 10,
respectively, on the background mortality rate. Sick and Sicker individuals also experience increased health
care costs and reduced QoL compared to healthy individuals. Once simulated individuals die, they transition
to the “Dead” state (denoted “D”), where they remain. Figure 1 shows the state-transition diagram of the
Sick-Sicker model. The evolution of the cohort is simulated in one-year discrete-time cycles. Both costs and
quality-adjusted life years (QALYs) are discounted at an annual rate of 0.03%.

Two alternative strategies exist for this hypothetical disease: a no-treatment and a treatment strategy. Under
the treatment strategy, Sick and Sicker individuals receive treatment and continue doing so until they recover
or die. The cost of the treatment is additional to the cost of being Sick or Sicker for one year. The treatment
improves QoL for those individuals who are Sick but has no effect on the QoL of those who are sicker. To
evaluate these two alternative strategies, we perform a CEA.

We assume that most of the parameters of the Sick-Sicker model and their uncertainty have been previously
estimated and are known to the analyst. However, while we can identify those who are afflicted with the
illness through obvious symptoms, we can not easily distinguish those in the Sick state from the those in
the Sicker state. Thus, we can not directly estimate state-specific mortality hazard rate ratios, nor do we
know the transition probability of progressing from Sick to Sicker. Therefore, we calibrate the model to
different epidemiological data. We internally validated the calibrated model by comparing the predicted
outputs from the model evaluated at the calibrated parameters against the calibration targets (Eddy et al.,
2012, Goldhaber-Fiebert et al. (2010)).

As part of the CEA, we conducted different deterministic sensitivity analysis (SA), including one-way and

5

6 CONTENTS

Figure 1: State-transition diagram of the Sick-Sicker model. Healthy individuals can get Sick, die or stay
healthy. Sick individuals can recover, transitioning back to healthy, can die, or stay sick. Once individuals
are Sicker, they stay Sicker until they die.

CONTENTS 7

two-way SA, and tornado plots. To quantify the effect of parameter uncertainty on decision uncertainty,
we conducted a probabilistic sensitivity analysis (PSA) and reported our uncertainty analysis results with a
cost-effectiveness acceptability curve (CEAC), cost-effectiveness acceptability frontier (CEAF) and expected
loss curves (ELC) (Alarid-Escudero et al., 2019). We also conducted a value of information (VOI) analysis
to determine whether potential future research is needed to reduce parameter uncertainty. All steps of the
CEA will be described using the different components of the framework.

Set-up

This report is a supplementary material meant to guide you through the R code of a fully functional deci-
sion model to showcase the framework described by the Decision Analysis in R for Technologies in Health
(DARTH) workgroup in the manuscript A need for change! A coding framework for improving transparency
in decision modeling. The code of this analysis can be downloaded from darthpack GitHub repository
(https://github.com/DARTH-git/darthpack). We recommend downloading the case-study files as a single
.zip file containing all directories. Unzip the folder and save to your desired directory. The framework is
divided into different directories, described in Table 1, that could be accessed from the RStudio project
darthpack.Rproj. In this framework, you will find multiple directories as described in Table 1 of the main
manuscript. We refer to the directory names of this framework and scripts stored in these directories using
italic style. This report is created with Markdown and is located in the reports directory of the framework.
The figures for the case-study can be found in the figs directory, data required to conduct some of the
analyses of the different components are in the data directory and the R scripts with functions, are located in
the R directory. The main R scripts that conduct the analyses of the different components of the framework
are stored in the R directory. In this document we do not show all the R code we refer to. Therefore, it is
important to follow along while reading this document.

http://darthworkgroup.com/
http://darthworkgroup.com/
https://github.com/DARTH-git/darthpack

8 CONTENTS

Chapter 1

Define model inputs

As described in the main manuscript, in this first component we declare all model input variables and set
their values. The R script running the analysis of this component is the 01_model_inputs.R file in the
analysis directory.

The input to inform the values is divided in three categories: external, estimated, and calibrated. The
majority of the Sick-Sicker model parameters are informed by external data. Only three parameter values
need to be estimated using model calibration.

In this component, we start with the general setup of the model, specifying among others the time horizon,
name and number of health states, proportion of the cohort in each of the different health states at the start
of the simulation and discount rates. The next step is to specify the external parameters. The initial model
parameter values and R variable names are presented in Table 1.1.

Table 1.1: Description of the initial parameters with their R name
and value of the Sick-Sicker model.

Parameter R name Value

Time horizon (nt) n_t 75 years
Names of health states (n) v_n H, S1, S2, D
Annual discount rate (costs/QALYs) d_c/d_e 3%
Annual transition probabilities
- Disease onset (H to S1) p_HS1 0.15
- Recovery (S1 to H) p_S1H 0.5
- Disease progression (S1 to S2) in the time-homogenous model p_S1S2 0.105
Annual mortality
- All-cause mortality (H to D) p_HD age-specific
- Hazard rate ratio of death in S1 vs H hr_S1 3
- Hazard rate ratio of death in S2 vs H hr_S2 3
Annual costs
- Healthy individuals c_H $2,000
- Sick individuals in S1 c_S1 $4,000

9

10 CHAPTER 1. DEFINE MODEL INPUTS

Parameter R name Value

- Sick individuals in S2 c_S2 $15,000
- Dead individuals c_D $0
- Additional costs of sick individuals treated in S1 or S2 c_Trt $12,000
Utility weights
- Healthy individuals u_H 1.00
- Sick individuals in S1 u_S1 0.75
- Sick individuals in S2 u_S2 0.50
- Dead individuals u_D 0.00
Intervention effect
- Utility for treated individuals in S1 u_Trt 0.95

Age-specific background mortality for healthy individuals is represented by the US population in 2015 and
obtained from the Human Mortality database. This information is stored in the 01_all_cause_mortality.csv
file in the data-raw directory. Based on this .csv file a vector with mortality rates by age is created using the
load_mort_data function in the 01_model_inputs_functions.R script. This function gives us the flexibility
to easily import data from other countries or years.

print.function(load_mort_data) # print the function

function(file = NULL){
Load mortality data from file
if(!is.null(file)) {
df_r_mort_by_age <- read.csv(file = file)}
else{
df_r_mort_by_age <- all_cause_mortality
}
Vector with mortality rates
v_r_mort_by_age <- as.matrix(dplyr::select(df_r_mort_by_age, Total))
##
return(v_r_mort_by_age)
}
<bytecode: 0x7fd6aa34f6e0>
<environment: namespace:darthpack>

Another function in the 01_model_inputs_functions.R script, is the load_all_parms function. This func-
tion, which is actually using the load_mort_data function, loads all parameters for the decision model from
multiple sources and creates a list that contains all parameters and their values.

print.function(load_all_params) # print the function

function(file.init = NULL,
file.mort = NULL){ # User defined
Load initial set of initial parameters from .csv file
if(!is.null(file.init)) {

https://www.mortality.org

11

df_params_init <- read.csv(file = file.init)
} else{
df_params_init <- df_params_init
}
##
All-cause age-specific mortality from .csv file
v_r_mort_by_age <- load_mort_data(file = file.mort)
##
l_params_all <- with(as.list(df_params_init), {
General setup
v_names_str <- c("No Treatment", "Treatment") # CEA strategies
n_str <- length(v_names_str) # Number of strategies
v_age_names <- n_age_init:(n_age_init + n_t - 1) # vector with age names
v_n <- c("H", "S1", "S2", "D") # vector with the 4 health states of the model:
Healthy (H), Sick (S1), Sicker (S2), Dead (D)
n_states <- length(v_n) # number of health states
v_s_init <- c(H = 1, S1 = 0, S2 = 0, D = 0) # initial state vector
Create list with all parameters
l_params_all <- list(
v_names_str = v_names_str,
n_str = n_str ,
n_age_init = n_age_init,
n_t = n_t ,
v_age_names = v_age_names,
v_n = v_n,
n_states = n_states,
v_s_init = c(H = 1, S1 = 0, S2 = 0, D = 0),
v_r_mort_by_age = v_r_mort_by_age
)
return(l_params_all)
}
)
##
l_params_all <- c(l_params_all,
df_params_init) # Add initial set of parameters
}
<bytecode: 0x7fd6aa340ef0>
<environment: namespace:darthpack>

The load_all_params function is informed by the arguments file.init and file.mort. The file.init
argument is a string with the location and name of the file with initial set of parameters. The initial
parameter values for our case-study are stored in the 01_init_params.csv file located in the data-raw directory.
The load_all_params function read this .csv file into the function environment as a dataframe called,
df_params_init.

12 CHAPTER 1. DEFINE MODEL INPUTS

The file.mort argument is a string with the location and name of the file with mortality data. As described
before, in our case-study this is the 01_all_cause_mortality.csv file. Within the load_all_parms function,
the load_mort_data function is used to create a vector with mortality rates from the .csv data.

After loading all the information, the load_all_params generates a list called, l_params_all, including all
parameters for the model including the general setup parameters and the vector of mortality rates. The
function also stores the dataframe df_params_init with the initial set of parameters in the list. This is all
executed in the in the 01_model_inputs.R script by running the code below.

l_params_all <- load_all_params()

For the Sick-Sicker model we do not have to estimate parameters, but we do have three parameters that need
to be estimated via model calibration. In this stage of the framework, we simply set these parameters to
valid “dummy” values that are compatible with the next phase of the analysis, model implementation, but
are ultimately just placeholder values until we conduct the calibration phase. This means that these values
will be replaced by the best-fitted calibrated values after we performed the calibration in component 3.

Using a function to create a list of base-case parameters to have all model parameters in a single object
is very useful, because this object will have to be updated for the calibration and the different sensitivity
analyses in components 3 and 5 of the framework, respectively. Below, we guide you through the components
of the function.

Chapter 2

Decision model

In this second component, we build the backbone of the decision analysis: the implementation of the model.
This component is performed by the 02_decision_model.R script. This file itself is not very large. It simply
loads some packages and sources the input from component 01 and in addition it runs the decision_model
function that is used to caputre the dynamic process of the Sick-Sicker example and stores the output. The
output of the model is the traditional cohort trace. The trace describes how the cohort is distributed among
the different health states over time and is plotted at the end of this script.

The function decision_model is defined in the 02_decision_model_functions.R file in the R folder. As
described in the paper, constructing a model as a function at this stage facilitates subsequent stages of the
model development and analysis. This since these processes will all call the same model function, but pass
different parameter values and/or calculate different final outcomes based on the model outputs. In the next
part, we will describe the code within the function.

print.function(decision_model) # print the code of the function

function(l_params_all, err_stop = FALSE, verbose = FALSE){ # User defined
Definition:
Decision model implementation function
Arguments:
l_params_all: List with all parameters of decision model
verbose: Logical variable to indicate print out of messages
Returns:
a_P: Transition probability array
m_M: Matrix cohort trace
##
with(as.list(l_params_all), {
Error checking
if ((n_t + n_age_init) > nrow(v_r_mort_by_age)) {
stop("Not all the age in the age range have a corresponding mortality rate")
}
##

13

14 CHAPTER 2. DECISION MODEL

if ((sum(v_s_init) != 1) | !all(v_s_init >= 0)) {
stop("vector of initial states (v_s_init) is not valid")
}
##
Age-specific transition probabilities
Mortality for healthy individuals
p_HDage <- 1 - exp(-v_r_mort_by_age[(n_age_init + 1) + 0:(n_t - 1)])
Mortality for sick individuals
p_S1Dage <- 1 - exp(-v_r_mort_by_age[(n_age_init + 1) + 0:(n_t - 1)] * hr_S1)
Mortality for sicker individuals
p_S2Dage <- 1 - exp(-v_r_mort_by_age[(n_age_init + 1) + 0:(n_t - 1)] * hr_S2)
##
Create age-specific transition probability matrices in an array
Initialize array
a_P <- array(0, dim = c(n_states, n_states, n_t),
dimnames = list(v_n, v_n, 0:(n_t-1)))
Fill in array
From H
a_P["H", "H",] <- (1-p_HDage) * (1 - p_HS1)
a_P["H", "S1",] <- (1-p_HDage) * p_HS1
a_P["H", "D",] <- p_HDage
From S1
a_P["S1", "H",] <- (1-p_S1Dage) * p_S1H
a_P["S1", "S1",] <- (1-p_S1Dage) * (1 - (p_S1S2 + p_S1H))
a_P["S1", "S2",] <- (1-p_S1Dage) * p_S1S2
a_P["S1", "D",] <- p_S1Dage
From S2
a_P["S2", "S2",] <- 1 - p_S2Dage
a_P["S2", "D",] <- p_S2Dage
From D
a_P["D", "D",] <- 1
##
Check if transition array is valid
check_transition_probability(a_P, err_stop = err_stop, verbose = verbose)
check_sum_of_transition_array(a_P, n_states, n_t, err_stop = err_stop, verbose = verbose)
##
Compute cohort trace matrix and transition array for age-dependent STM
Initialize cohort trace matrix
m_M <- matrix(0,
nrow = (n_t + 1), ncol = n_states,
dimnames = list(0:n_t, v_n))
Set first row of m.M with the initial state vector
m_M[1,] <- v_s_init

15

##
Iterate STM over time
for(t in 1:n_t){
m_M[t + 1,] <- m_M[t,] %*% a_P[, , t]
}
return(list(a_P = a_P,
m_M = m_M))
}
)
}
<bytecode: 0x7fd6ab074ee8>
<environment: namespace:darthpack>

The decision_model function is informed by the argument l_params_all. Via this argument we give the
function a list with all parameters of the decision model. For the Sick-Sicker model, these parameters are
stored in the list l_params_all, which we passed into the function as shown below.

l_out_stm <- decision_model(l_params_all = l_params_all) # run the function

This function itself has all the mathematical equations of the decision models coded inside. It starts by
calculating the age-specific transition probabilities from all non-dead states based on the vector of age-
specific mortality rates v_r_mort_by_age. These parameters will become vectors of length n_t, describing
the probability to die for all ages from all non-dead states.

The next part of the function, creates an array that stores age-specific transition probability matrices in each
of the third dimension. The transition probability matrix is a core component of a state-transition cohort
model (Iskandar, 2018). This matrix contains the probabilities of transitioning from the current health
state, indicated by the rows, to the other health states, specified by the columns. Since we have age-specific
transition probabilities, the transition probability matrix is different each cycle. These probabilities are only
depending on the age of the cohort, and not on other events; therefore, we can generate all matrices at the
start of the model. This results in n_t different age-specific matrices that are stored in an array, called
a_P, of dimensions n_states x n_states x n_t. After initializing the array, it is filled with the transition
probability stored in the list. When running the model, we can index the correct transition probability
matrix corresponding with the current age of the cohort. We then added some sanity checks to make sure
that the transition matrices and the transition probabilities are valid. The first three and last cycles of the
transition probability matrices stored in the array a.P are shown below.

l_out_stm$a_P[, , 1:3] # show the first three time-points of a_P

, , 0
##
H S1 S2 D
H 0.8491385 0.1498480 0.0000000 0.001013486
S1 0.4984813 0.3938002 0.1046811 0.003037378
S2 0.0000000 0.0000000 0.9899112 0.010088764
D 0.0000000 0.0000000 0.0000000 1.000000000

16 CHAPTER 2. DECISION MODEL

##
, , 1
##
H S1 S2 D
H 0.8491513 0.1498502 0.0000000 0.0009985012
S1 0.4985037 0.3938180 0.1046858 0.0029925135
S2 0.0000000 0.0000000 0.9900597 0.0099402657
D 0.0000000 0.0000000 0.0000000 1.0000000000
##
, , 2
##
H S1 S2 D
H 0.8490910 0.1498396 0.0000000 0.001069428
S1 0.4983976 0.3937341 0.1046635 0.003204853
S2 0.0000000 0.0000000 0.9893570 0.010642959
D 0.0000000 0.0000000 0.0000000 1.000000000

l_out_stm$a_P[, , l_params_all$n_t] # show it for the last cycle

H S1 S2 D
H 0.6055199 0.1068564 0.00000000 0.2876237
S1 0.1807584 0.1427991 0.03795926 0.6384833
S2 0.0000000 0.0000000 0.03365849 0.9663415
D 0.0000000 0.0000000 0.00000000 1.0000000

By comparing these probability matrices, we observe an increase in the probabilities of transitioning to death
from all health states.

After the array is filled, the cohort trace matrix, m_M, of dimensions n_t x n_states is initialized. This
matrix will store the state occupation at each point in time. The first row of the matrix is informed by
the initial state vector v_s_init. For the remaining points in time, we iteratively multiply the cohort trace
with the age-specific transition probability matrix corresponding to the specific cycle obtained by indexing
the array a_P appropriately. All the outputs and relevant elements of the decision model are stored in a list,
called l_out_stm. This list contains the array of the transition probability matrix for all cycles t and the
cohort trace m_M.

head(l_out_stm$m_M) # show the top part of the cohort trace

H S1 S2 D
0 1.0000000 0.0000000 0.00000000 0.000000000
1 0.8491385 0.1498480 0.00000000 0.001013486
2 0.7957468 0.1862564 0.01568695 0.002309774
3 0.7684912 0.1925699 0.03501425 0.003924648
4 0.7484793 0.1909659 0.05478971 0.005765035
5 0.7306193 0.1873106 0.07413838 0.007931783

17

tail(l_out_stm$m_M) # show the bottom part of the cohort trace

H S1 S2 D
70 0.009928317 0.0022433565 2.035951e-04 0.9876247
71 0.007153415 0.0015935925 1.311619e-04 0.9911218
72 0.005058845 0.0011174473 8.674540e-05 0.9937370
73 0.003460336 0.0007552206 5.436484e-05 0.9957301
74 0.002289594 0.0004937081 3.298632e-05 0.9971837
75 0.001475636 0.0003151589 1.985106e-05 0.9981894

Using the code below, we can graphically show the model dynamics by plotting the cohort trace. Figure 2.1
shows the distribution of the cohort among the different health states at each time point.

0.00

0.25

0.50

0.75

1.00

0 20 40 60
Cycle

P
ro

po
rt

io
n

of
 th

e
co

ho
rt

Health state
H
S1
S2
D

Figure 2.1: Cohort trace of the Sick-Sicker cohort model

18 CHAPTER 2. DECISION MODEL

Chapter 3

Model calibration

In this third component, we calibrate unknown model parameters by matching model outputs to specified
calibration targets. Specifically, we calibrate the Sick-Sicker model to match survival, prevalence and the
proportion who are Sicker, among all those afflicted (Sick+Sicker). We used a Bayesian calibration approach
using the incremental mixture importance sampling (IMIS) algorithm (Steele et al., 2006), which has been
used to calibrate health policy models (Raftery and Bao, 2010, Menzies et al. (2017), Rutter et al. (2018)).
Bayesian methods allow us to quantify the uncertainty in the calibrated parameters even in the presence of
non-identifiability (Alarid-Escudero et al., 2018). This analysis is coded in the 03_calibration.R file in the
analysis folder. The target data is stored in the 03_calibration_targets.RData file. Similar to component
02 2, in the section 03.1 Load packages, we start by loading inputs and functions. In addition, we load the
calibration targets data into the R workspace. In the next section, 03.2 Visualize targets, we plot each of
the calibration targets with their confidence intervals.

In section 03.3 Run calibration algorithms, we set the parameters we need to calibrate to fixed values and
test if the function calibration_out that produces model outputs corresponding to the calibration targets
works. This function takes a vector of parameters that need to be calibrated and a list with all parameters
of decision model and computes model outputs to be used for calibration routines.

print.function(calibration_out) # print the functions

function(v_params_calib, l_params_all){ # User defined
Substitute values of calibrated parameters in base-case with
calibrated values
l_params_all <- update_param_list(l_params_all = l_params_all, params_updated = v_params_calib)
##
Run model with updated calibrated parameters
l_out_stm <- decision_model(l_params_all = l_params_all)
##
Epidemiological Output
Overall Survival (OS)
v_os <- 1 - l_out_stm$m_M[, "D"]
##

19

20 CHAPTER 3. MODEL CALIBRATION

Disease prevalence
v_prev <- rowSums(l_out_stm$m_M[, c("S1", "S2")])/v_os
##
Proportion of sick in S1 state
v_prop_S2 <- l_out_stm$m_M[, "S2"] / rowSums(l_out_stm$m_M[, c("S1", "S2")])
##
Return Output
l_out <- list(Surv = v_os[c(11, 21, 31)],
Prev = v_prev[c(11, 21, 31)],
PropSicker = v_prop_S2[c(11, 21, 31)])
return(l_out)
}
<bytecode: 0x7fd6a84cbb58>
<environment: namespace:darthpack>

This function is informed by two argument v_params_calib and l_params_all. The vector v_params_calib
contains the values of the three parameters of interest. The list l_params_all contains all parameters of
the decision model. The placeholder values are replaced by v_params_calib and with these values the
model is evaluated. Model evaluation takes place by running the decision_model function, described in
component 02. The result in a new list with output of the model corresponding to the parameter values
in the v_params_calib. With this new decision model output, the overall survival, disease prevalence
and the proportion of Sicker in the Sick and Sicker states are calculated. The estimated values for these
epidemiological outcomes at different timepoints are combined in a list called l_out produced but the
calibration_out.

Once we make sure this code works, we specify the calibration parameters in section 03.3.1 Specify calibration
parameters. These include setting the seed for the random number generation, specifying the number of
random samples to obtain from the calibrated posterior distribution, the name of the input parameters and
the range of these parameters that will inform the prior distributions of the calibrated parameters, and the
name of the calibration targets: Surv, Prev, PropSick.

In the next section, 03.3.2 Run IMIS algorithm, we calibrate the Sick-Sicker model with the IMIS algorithm.
For this case-study, we assume a normal likelihood and uniform priors. For a more detailed description of
IMIS for Bayesian calibration, different likelihood functions and prior distributions, we refer the reader to the
tutorial for Bayesian calibration by Menzies et al. (Menzies et al., 2017). We use the IMIS function from the
IMIS package that calls the functions likelihood, sample.prior and prior, to draw samples from the pos-
terior distribution (Raftery and Le Bao, 2012). The functions are specified in the 03_calibration_functions.R
file in the R folder. For the IMIS function, we specify the incremental sample size at each iteration of IMIS,
the desired posterior sample size at the resample stage, the maximum number of iterations in IMIS and the
number of optimizers which could be 0. The function returns a list, which we call l_fit_imis, with the
posterior samples, the diagnostic statistics at each IMIS iteration and the centers of Gaussian components
(Raftery and Le Bao, 2012). We store the posterior samples in the matrix m_calib_post.

We then explore these posterior distributions in section 03.4 Exploring posterior distribution. We start by
estimating the posterior mean, median and 95% credible interval, the mode and the maximum-a-posteriori
(MAP). All for these summary statistics are combined in a dataframe called df_posterior_summ. Table 3.1

21

shows the summary statistics of the posterior distribution.

Table 3.1: Summary statistics of the posterior distribution
Mean 2.5% 50% 97.5% MAP

p_S1S2 0.1076687 0.0964559 0.1073187 0.1196543 0.107841
hr_S1 2.7261594 1.1010910 2.6790446 4.4020812 2.297053
hr_S2 9.6232710 7.3427361 9.6461532 11.9533402 9.886776

In section 03.4.2 Visualization of posterior distribution, we generate a pairwise scatter plot of the calibrated
parameters (Figure 3.2) and a 3D scatter plot of the joint posterior distribution (Figure 3.1). These figures
are saved in the figs directory.

Figure 3.1: Joint posterior distribution

Finally, the posterior distribution and MAP estimate from the IMIS calibration are stored in the file
03_imis_output.RData. Storing this data as an .Rdata file allows to import the data in following sections
without needing to re-run the calibration component.

22 CHAPTER 3. MODEL CALIBRATION

Figure 3.2: Pairwise posterior distribution of calibrated parameters

Chapter 4

Validation

In this forth component, we check the internal validity of our Sick-Sicker model before we move on to the
analysis components. To internally validate the Sick-Sicker model, we compare the model-predicted output
evaluated at posterior parameters against the calibration targets. This is all done in the 04_validation.R
script in the analysis folder.

In section 04.2 Compute model-predicted outputs, we compute the model-predicted outputs for each sample
of posterior distribution as well as for the MAP estimate. We then use the function data_summary to
summarize the model-predicted posterior outputs into different summary statistics.

print.function(data_summary)

function(data, varname, groupnames){
summary_func <- function(x, col){
c(mean = mean(x[[col]], na.rm = TRUE),
median = quantile(x[[col]], probs = 0.5, names = FALSE),
sd = sd(x[[col]], na.rm=TRUE),
lb = quantile(x[[col]], probs = 0.025, names = FALSE),
ub = quantile(x[[col]], probs = 0.975, names = FALSE))
}
data_sum <- plyr::ddply(data, groupnames, .fun = summary_func,
varname)
data_sum <- plyr::rename(data_sum, c("mean" = varname))
return(data_sum)
}
<bytecode: 0x7fd6ab0a7738>
<environment: namespace:darthpack>

This function is informed by three arguments, data, varname and groupnames.

The computation of the model-predicted outputs using the MAP estimate is done by inserting the
v_calib_post_map data into the previously described calibration_out function. This function creates a
list including the estimated values for survival, prevalence and the proportion of sicker individuals at cycles

23

24 CHAPTER 4. VALIDATION

Figure 4.1: Survival data: Model-predicted outputs vs targets.

10, 20 and 30.

In sections 04.6 Internal validation: Model-predicted outputs vs. targets, we check the internal validation by
plotting the model-predicted outputs against the calibration targets (Figures 4.1-4.3). The generated plots
are saved as .png files in the figs folder. These files can be used in reports without the need of re-running
the code.

25

Figure 4.2: Prevalence data of sick individuals: Model-predicted output vs targets.

26 CHAPTER 4. VALIDATION

Figure 4.3: Proportion who are Sicker, among all those afflicted (Sick + Sicker): Model-predicted output.

Chapter 5

Analysis

The analysis component is where the elements in components 1-4 are combined to answer the question(s) of
interest given current information and to quantify the value of potential further research. Our framework
separates the analysis in three subcomponents: 05a Probabilistic analysis, _05b Deterministic analysis_and
05c Value of information analysis. For the Sick-Sicker case-study, we use all three subcomponents to conduct
the CEA and to quantify the uncertainty of our decision. For procedures in the CEA, we rely on the R
package dampack, which is available here: https://github.com/DARTH-git/dampack. To install dampack,
please follow these instructions:

5.1 05a Probabilistic analysis

In this subcomponent, we evaluate decision uncertainty by propagating the uncertainty through the CEA
using probabilistic sensitivity analysis (PSA). Until now we used the parameter values as described in Table
1.1. However, we are uncertain about these values. Most of these input parameters are defined by probability
distribution as described in Table 5.1.

Table 5.1: Description of parameters with their R name and distri-
bution.

Parameter R name Distribution

Annual transition probabilities
- Disease onset (H to S1) p_HS1 beta(30, 170)
- Recovery (S1 to H) p_S1H beta(60, 60)
Annual costs
- Healthy individuals c_H gamma(shape = 100, scale = 20)
- Sick individuals in S1 c_S1 gamma(shape = 177.8, scale = 22.5)
- Sick individuals in S2 c_S2 gamma(shape = 225, scale = 66.7)
- Additional costs of sick
individuals treated in S1 or S2

c.Trt gamma(shape = 73.5, scale = 163.3)

Utility weights

27

https://github.com/DARTH-git/dampack

28 CHAPTER 5. ANALYSIS

Parameter R name Distribution

- Healthy individuals u_H truncnorm(mean = 1, sd = 0.01, b = 1)
- Sick individuals in S1 u_S1 truncnorm(mean = 0.75, sd = 0.02, b = 1)
- Sick individuals in S2 u_S2 truncnorm(mean = 0.50, sd = 0.03, b = 1)
Intervention effect
- Utility for treated individuals in
S1

u_Trt truncnorm(mean = 0.95, sd = 0.02, b = 1)

In a PSA we sample the input parameter values from these distributions and we then run the model
at each sample. In the file 05a_probabilistic_analysis_functions.R we created a single function, called
generate_psa_params. This function generates a PSA dataset for all the CEA input parameters. We spec-
ify the number of PSA samples via the n_sim argument. The function also accepts specifying a seed to allow
reproducibility of the results.

print.function(generate_psa_params) # print the function

function(n_sim = 1000, seed = 20190220){ # User defined
Load calibrated parameters
data("m_calib_post")
n_sim <- nrow(m_calib_post)
set_seed <- seed
df_psa_params <- data.frame(
Calibrated parameters
m_calib_post,
##
Transition probabilities (per cycle)
p_HS1 = rbeta(n_sim, 30, 170), # probability to become sick when healthy
p_S1H = rbeta(n_sim, 60, 60) , # probability to become healthy when sick
##
State rewards
Costs
c_H = rgamma(n_sim, shape = 100, scale = 20) , # cost of remaining one cycle in state H
c_S1 = rgamma(n_sim, shape = 177.8, scale = 22.5), # cost of remaining one cycle in state S1
c_S2 = rgamma(n_sim, shape = 225, scale = 66.7) , # cost of remaining one cycle in state S2
c_Trt = rgamma(n_sim, shape = 73.5, scale = 163.3), # cost of treatment (per cycle)
c_D = 0 , # cost of being in the death state
Utilities
u_H = truncnorm::rtruncnorm(n_sim, mean = 1, sd = 0.01, b = 1), # utility when healthy
u_S1 = truncnorm::rtruncnorm(n_sim, mean = 0.75, sd = 0.02, b = 1), # utility when sick
u_S2 = truncnorm::rtruncnorm(n_sim, mean = 0.50, sd = 0.03, b = 1), # utility when sicker
u_D = 0 , # utility when dead
u_Trt = truncnorm::rtruncnorm(n_sim, mean = 0.95, sd = 0.02, b = 1) # utility when being treated
)

5.1. 05A PROBABILISTIC ANALYSIS 29

return(df_psa_params)
}
<bytecode: 0x7fd6ade0a920>
<environment: namespace:darthpack>

The function returns the df_psa_input dataframe with a PSA dataset of the input parameters. With
this dataframe we can run the PSA to produce distributions of costs, effectiveness and NMB. The PSA
is performed by the 05a_probabilistic_analysis.R script. As shown in the code below, the df_psa_input
dataframe is used by the update_param_list function to generate the corresponding list of parameters
for the PSA. For each simulation, we perfrom three steps. First, the list of parameters is updated by the
update_param_list function. Second, the model is executed by the calculate_ce_out function using
the updated parameter list and third, the dataframes df_c and df_e store the estimated cost and effects,
respectively. The final part of this loop is to satisfy the modeler when waiting on the results, by displaying
the simulation progress.

for(i in 1:n_sim){
l_psa_input <- update_param_list(l_params_all, df_psa_input[i,])
df_out_temp <- calculate_ce_out(l_psa_input)
df_c[i,] <- df_out_temp$Cost
df_e[i,] <- df_out_temp$Effect
Display simulation progress
if(i/(n_sim/10) == round(i/(n_sim/10), 0)) {
cat('\r', paste(i/n_sim * 100, "% done", sep = " "))

}
}

We can plot the results using the plot function from dampack. Figure 5.1 shows the CE scatter plot with
the joint distribution of costs and effects for each strategy and their corresponding 95% confidence ellipse.

Table 5.2: Probabilistic cost-effectiveness analysis results of the Sick-Sicker model comparing no treatment
with treatment

Strategy Cost Effect Inc_Cost Inc_Effect ICER
No.Treatment 115538.9 19.95305 NA NA NA
Treatment 213755.8 20.63891 98216.84 0.6858646 143201.5

Next, we perform a CEA using the previously used calculate_icers functions from dampack. Table 5.2
shows the results of the probabilistic CEA. In addition, we plot a cost-effectiveness plane with the frontier, the
cost-effectiveness acceptability curves (CEACs) and frontier (CEAF), expected Loss curves (ELCs) (Figures
5.2 - 5.4) (Alarid-Escudero et al., 2019). Followed by creating linear regression metamodeling sensitivity
analysis graphs (Figures 5.5 - 5.8)(Jalal et al., 2013). All generated figures are shown below and stored to
the figs folder .

30 CHAPTER 5. ANALYSIS

Figure 5.1: The cost-effectiveness plane graph showing the results of the probabilistic sensitivity analysis for
the Sick-Sicker case-study.

5.1. 05A PROBABILISTIC ANALYSIS 31

Figure 5.2: Cost-effectiveness frontier

32 CHAPTER 5. ANALYSIS

Figure 5.3: Cost-effectiveness acceptability curves (CEACs) and frontier (CEAF).

5.1. 05A PROBABILISTIC ANALYSIS 33

Figure 5.4: Expected Loss Curves.

34 CHAPTER 5. ANALYSIS

Figure 5.5: One-way sensitivity analysis (OWSA).

5.2 05b Deterministic analysis

In this subcomponent, we perform a deterministic CEA, followed by some deterministic sensitivity analysis,
including one-way, two-way and tornado sensitivity analyses. The function script of this subcomponent,
05b_deterministic_analysis_function.R, contains the function calculate_ce_out. This function calculates
costs and effects for a given vector of parameters using a simulation model. We need to run our simulation
model using the calibrated parameter values, but the list we created in component 01 (1) still contain
the placeholder values for the calibrated parameters. This means we need to update these values by the
calibrated values stored in the vector v_calib_post_map. The function update_param_list updates the
list of parameters with new values for some specific parameters.

print.function(update_param_list)

function(l_params_all, params_updated){
##
if (typeof(params_updated)!="list"){
params_updated <- split(unname(params_updated),names(params_updated)) #converte the named vector to a list
}
l_params_all <- modifyList(l_params_all, params_updated) #update the values
return(l_params_all)
}
<bytecode: 0x7fd6aebe94c8>

5.2. 05B DETERMINISTIC ANALYSIS 35

Figure 5.6: Optimal strategy with OWSA

36 CHAPTER 5. ANALYSIS

Figure 5.7: Tornado plot

5.2. 05B DETERMINISTIC ANALYSIS 37

Figure 5.8: Two-way sensitivity analysis (TWSA).

38 CHAPTER 5. ANALYSIS

<environment: namespace:darthpack>

The first argument of the function, called l_params_all, is a list with all the parameters of decision model.
The second argument, params_updated, is an object with parameters for which values need to be updated.
The function returns the list l_params_all with updated values.

In the 05b_deterministic_analysis.R script we execute the update_param_list function for our case-study,
resulting in the list l_params_basecase where the placeholder values for p_S1S2, hr_S1 and hr_S2 are
replaced by the calibration estimates.

l_params_basecase <- update_param_list(l_params_all, v_calib_post_map)

We use this new list as an argument in the calculate_ce_out function. In addition, we specify the
willingness-to-pay (WTP) threshold value using the n_wtp argument of this function. This WTP value
is used to compute a net monetary benefit (NMB) value. If the user does not specify the WTP, a default
value of $100,000/QALY will be used by the function.

df_out_ce <- calculate_ce_out(l_params_all = l_params_basecase,
n_wtp = 150000)

print.function(calculate_ce_out) # print the function

function(l_params_all = load_all_params(),
n_wtp = 100000){ # User defined
with(as.list(l_params_all), {
Create discounting vectors
v_dwc <- 1 / ((1 + d_e) ^ (0:(n_t))) # vector with discount weights for costs
v_dwe <- 1 / ((1 + d_c) ^ (0:(n_t))) # vector with discount weights for QALYs
##
Run STM model at a parameter set for each intervention
l_model_out_no_trt <- decision_model(l_params_all = l_params_all)
l_model_out_trt <- decision_model(l_params_all = l_params_all)
##
Cohort trace by treatment
m_M_no_trt <- l_model_out_no_trt$m_M # No treatment
m_M_trt <- l_model_out_trt$m_M # Treatment
##
Vectors with costs and utilities by treatment
v_u_no_trt <- c(u_H, u_S1, u_S2, u_D)
v_u_trt <- c(u_H, u_Trt, u_S2, u_D)
##
v_c_no_trt <- c(c_H, c_S1, c_S2, c_D)
v_c_trt <- c(c_H, c_S1 + c_Trt, c_S2 + c_Trt, c_D)
##
Mean Costs and QALYs for Treatment and NO Treatment
v_tu_no_trt <- m_M_no_trt %*% v_u_no_trt
v_tu_trt <- m_M_trt %*% v_u_trt

5.2. 05B DETERMINISTIC ANALYSIS 39

##
v_tc_no_trt <- m_M_no_trt %*% v_c_no_trt
v_tc_trt <- m_M_trt %*% v_c_trt
##
Total discounted mean Costs and QALYs
tu_d_no_trt <- t(v_tu_no_trt) %*% v_dwe
tu_d_trt <- t(v_tu_trt) %*% v_dwe
##
tc_d_no_trt <- t(v_tc_no_trt) %*% v_dwc
tc_d_trt <- t(v_tc_trt) %*% v_dwc
##
Vector with total discounted mean Costs and QALYs
v_tc_d <- c(tc_d_no_trt, tc_d_trt)
v_tu_d <- c(tu_d_no_trt, tu_d_trt)
##
Vector with discounted net monetary benefits (NMB)
v_nmb_d <- v_tu_d * n_wtp - v_tc_d
##
Dataframe with discounted costs, effectiveness and NMB
df_ce <- data.frame(Strategy = v_names_str,
Cost = v_tc_d,
Effect = v_tu_d,
NMB = v_nmb_d)
##
return(df_ce)
}
)
}
<bytecode: 0x7fd6ae86b000>
<environment: namespace:darthpack>

After calculating the discount weights, this function runs the simulation model using the previously de-
scribed function decision_model in the 02_simulatiomn_model_function.R script. Inside the function
calculate_ce_out, the simulation model is run for both the treatment, l_model_out_trt, and no treat-
ment, l_model_out_no_trt, strategies of the Sick-Sicker model. Running it for both treatment strategies
is done for illustration purposes. In this case-study, the resulting cohort traces are identical and we could
have executed it only once.

In the second part of the function we create multiple vectors for both the cost and effects of both strategies.
These vectors multiply the cohort trace to compute the cycle-specific rewards. This results in vectors of
total costs (v_tc) and total effects (v_tu) per cycle. By multiplying these vectors with the vectors with the
discount weights for costs (v_dwc) and effects (v_dwe) we get the total discounted mean costs (tc_d_no_trt
and tc_d_trt) and QALYs (tu_d_no_trt and tu_d_trt) for both strategies. These values are used in the
calculation of the NMB. Finally, the total discounted costs, effectiveness and NMB are combined in the

40 CHAPTER 5. ANALYSIS

dataframe df_ce. The results for our case-study are shown below.

df_out_ce # print the dataframe

Strategy Cost Effect NMB
1 No Treatment 115244.8 20.0233 2888250
2 Treatment 214165.8 20.7226 2894224

This dataframe of CE results can be used as an argument in the calculate_icers function from the dampack
package to calculate the incremental cost-effectiveness ratios (ICERs) and noting which strategies are weakly
and strongly dominated. Table 5.3 shows the result of the deterministic CEA.

df_cea_det <- calculate_icers(cost = df_out_ce$Cost,
effect = df_out_ce$Effect,
strategies = l_params_basecase$v_names_str)

Table 5.3: Deterministic cost-effectiveness analysis results of the Sick-Sicker model comparing no treatment
with treatment.

Strategy Cost Effect Inc_Cost Inc_Effect ICER
No Treatment 115244.8 20.0233 NA NA NA
Treatment 214165.8 20.7226 98921.01 0.6992988 141457.4

Finally, Figure 5.9 shows the cost-effectiveness frontier of the CEA.

We then conduct a series of deterministic sensitivity analysis. First, we conduct a one-way sensitivity analysis
(OWSA) on the variables c_Trt, p_HS1, u_S1 and u_Trt and a two-way sensitivity analysis (TWSA) using
the owsa_det and twsa_det functions. We use the output of these functions to produce different SA plots,
such as OWSA tornado, one-way optimal strategy and TWSA plots (Figures 5.10 - 5.13).

5.3 05c Value of information

In the VOI component, the results from the PSA generated in the probabilistic analysis subcomponent are
used to determine whether further potential research is needed. We use the calc_evpi function from the
dampack package to calculate the expected value of perfect information (EVPI). Figure 5.14 shows the EVPI
for the different WTP values.

evpi <- calc_evpi(wtp = v_wtp, psa = l_psa)

5.3. 05C VALUE OF INFORMATION 41

Figure 5.9: Cost-effectiveness frontier.

42 CHAPTER 5. ANALYSIS

Figure 5.10: One-way sensitivity analysis results

5.3. 05C VALUE OF INFORMATION 43

Figure 5.11: The optimal strategy with OWSA

44 CHAPTER 5. ANALYSIS

Figure 5.12: The tornado plot

5.3. 05C VALUE OF INFORMATION 45

Figure 5.13: Two-way sensitivity results.

46 CHAPTER 5. ANALYSIS

Figure 5.14: Expected value of perfect information

Bibliography

Alarid-Escudero, F., Enns, E., Kuntz, K., Michaud, T., and Jalal, H. (2019). ”Time Traveling Is Just Too
Dangerous” But Some Methods Are Worth Revisiting: The Advantages of Expected Loss Curves Over
Cost-Effectiveness Acceptability Curves and Frontier. Value in Health, 22(5):611–618.

Alarid-Escudero, F., MacLehose, R., Peralta, Y., Kuntz, K., and EA, E. (2018). Nonidentifiability in model
calibration and implications for medical decision making. Medical Decision Making, 38(7):810–821. PMID:
30248276.

Eddy, D. M., Hollingworth, W., Caro, J. J., Tsevat, J., McDonald, K. M., and Wong, J. B. (2012). Model
transparency and validation: A report of the ISPOR-SMDM modeling good research practices task force-7.
Medical Decision Making, 32(5):733–743.

Enns, E. A., Cipriano, L. E., Simons, C. T., and Kong, C. Y. (2015). Identifying Best-Fitting Inputs in
Health-Economic Model Calibration: A Pareto Frontier Approach. Medical Decision Making, 35(2):170–
182.

Goldhaber-Fiebert, J., Stout, N., and Goldie, S. (2010). Empirically evaluating decision-analytic models.
Value in Health, 13(5):667–674.

Iskandar, R. (2018). A theoretical foundation for state-transition cohort models in health decision analysis.
PloS one, 13(12):e0205543–e0205543.

Jalal, H., Dowd, B., Sainfort, F., and Kuntz, K. M. (2013). Linear regression metamodeling as a tool to
summarize and present simulation model results. Medical Decision Making, 33(7):880–90.

Menzies, N. A., Soeteman, D. I., Pandya, A., and Kim, J. J. (2017). Bayesian Methods for Calibrating
Health Policy Models: A Tutorial. PharmacoEconomics, 35(6):613–624.

Raftery, A. and Bao, L. (2010). Estimating and Projecting Trends in HIV/AIDS Generalized Epidemics
Using Incremental Mixture Importance Sampling. Biometrics, 66(4):1162–1173.

Raftery, A. and Le Bao (2012). IMIS: Increamental Mixture Importance Sampling. R package version 0.1.

Rutter, C., Ozik, J., DeYoreo, M., and N, C. (2018). Microsimulation Model Calibration using Incremental
Mixture Approximate Bayesian Computation. arXiv, (april):1–20.

Steele, R., Raftery, A., and Emond, M. (2006). Computing Normalizing Constants for Finite Mixture Models
via Incremental Mixture Importance Sampling (IMIS). Journal ofComputational and Graphical Statistics,
15(3):712–734.

47

	The Sick-Sicker model
	Set-up

	Define model inputs
	Decision model
	Model calibration
	Validation
	Analysis
	05a Probabilistic analysis
	05b Deterministic analysis
	05c Value of information

